Change to Ukrainian interface versionChange to English interface versionChange to Russian interface versionHome pageClear last query resultsHelp page
Search for specific termsBrowse by subject categoryBrowse alphabetical list of titlesBrowse by organizationBrowse special topic issues

close this bookIndustrial Metabolism: Restructuring for Sustainable Development (UNU; 1994; 376 pages)
View the documentNote to the reader from the UNU
View the documentAcknowledgements
View the documentIntroduction
close this folderPart 1: General implications
Open this folder and view contents1. Industrial metabolism: Theory and policy
Open this folder and view contents2. Ecosystem and the biosphere: Metaphors for human-induced material flows
close this folder3. Industrial restructuring in industrial countries
View the documentIntroduction
View the documentIdentifying indicators of environmentally relevant structural change
View the documentStructural change as environmental relief
View the documentEnvironmentally relevant structural change: Empirical analysis
View the documentTypology of environmentally relevant structural change
View the documentSpecific conclusions
View the documentGeneral conclusions
Open this folder and view contents4. Industrial restructuring in developing countries: The case of India
Open this folder and view contents5. Evolution, sustainability, and industrial metabolism
Open this folder and view contentsPart 2: Case-studies
Open this folder and view contentsPart 3: Further implications
View the documentBibliography
View the documentContributors
 

Structural change as environmental relief

The harmful as well as the benign environmental effects of structural (or industrial) change and the significance of a structurally oriented environmental policy have been cited in recent literature. According to this insight, environmentally benign effects of structural change are to be expected by actively delinking economic growth from the consumption of ecologically significant resources, like energy and materials. Such delinking, achievable in particular by decreasing the input coefficients of these resources (dematerialization, re-use, recycling) or by increasing their effectiveness (energy and materials productivity) through better use,

- would result in a decrease in resource consumption and probably also in production costs, at least in the long term;
- would mean ex ante environmental protection, which is cheaper and more efficient than ex post installation of pollution-abatement equipment (end-of-pipe technology);
- would be environmentally more effective, since end-of-pipe technologies normally treat only single, "outstanding" pollutants, whereas integrated technologies touch upon several environmental effects simultaneously; and
- would open up a broad range of options for technological innovation or would itself be the result of such innovation.

For certain types of pollution, the effectiveness of structural change has been verified empirically. For example, structural change with respect to energy consumption had more benign environmental effects than endof-pipe protection measures, especially as regards such emissions as SO2 and Nox. Several OECD reports on the state of the environment reflect this fact for a number of countries. Changes in the energy structure, for instance, led to greater environmental protection effects than the installation of desulphurization plants. In Japan, energy conservation (and also water conservation) has been particularly successful; conventional environmental protection has been superseded by technological and structural change.

Examples like these may support the rapid introduction of market instruments, like resource taxes and effluent charges - a policy that would accelerate structural change and lead to economic advantages as well as to environmental relief.

Continue

to previous section to next section

[Ukrainian]  [English]  [Russian]