Change to Ukrainian interface versionChange to English interface versionChange to Russian interface versionHome pageClear last query resultsHelp page
Search for specific termsBrowse by subject categoryBrowse alphabetical list of titlesBrowse by organizationBrowse special topic issues

close this bookAmaranth to Zai Holes, Ideas for Growing Food under Difficult Conditions (ECHO; 1996; 397 pages)
View the documentOther ECHO publications
View the documentAbout this book
View the documentAcknowledgements
Open this folder and view contents1: Basics of agricultural development
Open this folder and view contents2: Vegetables and small fruits in the tropics
Open this folder and view contents3: Staple crops
Open this folder and view contents4: Multipurpose trees
Open this folder and view contents5: Farming systems and gardening techniques
Open this folder and view contents6: Soil health and plant nutrition
Open this folder and view contents7: Water resources
Open this folder and view contents8: Plant protection and pest control
Open this folder and view contents9: Domestic animals
Open this folder and view contents10: Food science
Open this folder and view contents11: Human health care
Open this folder and view contents12: Seeds and germplasm
Open this folder and view contents13: Energy and technologies
Open this folder and view contents14: From farm to market
Open this folder and view contents15: Training and missionary resources
Open this folder and view contents16: Oils
Open this folder and view contents17: Above-ground (urban) gardens
View the document18: What is ECHO?
View the documentAdditional ECHO publications
Open this folder and view contentsECHO development notes - issue 52
Open this folder and view contentsECHO development notes: issue 53
close this folder28 additional technical notes about tropical agriculture
View the documentA few alternate seed sources that we commonly use
View the documentAmaranth - grain and vegetable
Open this folder and view contentsArid region farming primer
View the documentCitrus propagation and rootstocks
Open this folder and view contentsCucurbit seeds
Open this folder and view contentsDry farming
View the documentMuscovy ducks for png villages
View the documentFruit crops
View the documentFruit vegetables
View the documentGrain crops
View the documentGround covers and green manures
View the documentGreen manure crops
View the documentIndustrial crops
View the documentThe lablab bean as green manure
View the documentLeafy vegetables
View the documentLeguminous vegetables
View the documentThe moringa tree
View the documentRecipes to learn to eat moringa
View the documentMiscellaneous vegetables
View the documentThe poor man's plow
View the documentPulses (grain legumes)
View the documentRabbit raising in the tropics
View the documentLetter from fremont regier, mennonite central committee, Botswana (and earlier in Zaire)
View the documentRoots and tubers
View the documentSunnhemp as a green manure
View the documentThe sweet potato
View the documentTropical pasture and feed crops
View the documentThe velvet bean as green manure
Open this folder and view contentsPrinciples of agroforestry
Open this folder and view contentsGood nutrition on the small farm

The lablab bean as green manure

The Lablab Bean (Dolichos lablab or Lablab purpureus) is a legume very similar in appearance to the velvet bean, but even faster growing where soils are fairly fertile. It has not been as valuable to us because of its need for somewhat more fertile soils and occasional insect problems, but may well be important to us later on when the other green manures have raised fertility sufficiently. The lablab bean is almost as drought-resistant as the jack bean, is very shade- tolerant, and is among the most palatable of legumes for animals (definitely preferred over velvet bean or jack bean). Lablab beans grow well from sea level up to about 1500 meters. They require well-drained soils. Lablab beans start flowering after 3 months and continue most of the first year, producing seed as well as remaining green. If soils are deep enough and other conditions permit, it will grow right through the dry season. I have seen plants that survived 3 years in droughty areas of the central plateau of Haiti. [Ed: in the sandy soils at ECHO lablab beans get nematodes so badly that it is difficult to keep them alive an entire year]. It nodulates profusely, producing mostly white nodules. Whereas the velvet bean growth is reduced if it has nothing to climb, plants in thick stands of lablab beans will begin to climb up each other. Another difference from the velvet or jack bean is that the lablab bean can be cut off nearly at ground level and will grow again, although with somewhat less vigor. Lablab beans are traditionally planted toward the end of the agricultural cycle in come villages in Honduras to provide dry-season pasture for animals. It is also edible, and in some places, such as Haiti and West Africa, is widely appreciated as a regular food. Young pods or immature beans can be eaten green (beans taste similar to a sweet pea - a white seeded variety is best for this). Dry lablab beans can be substituted for dry beans in most recipes. Where it grows well, the lablab bean has produced a phenomenal 11 kg per square meter (110 T/Ha) of above ground organic matter (wet weight). Though we have had problems with insect attacks, its growth is so vigorous that it still usually grows as fast as the velvet bean. Because animals prefer it to almost anything else, lablab beans cannot be grown where animals run free. In pure stands, lablab beans should be planted about 10/square meter. We have not found a good system yet for planting in corn fields because of its rapid growth, but it should be possible with heavy pruning (which it withstands well). The lablab bean requires either a recently cultivated or a sandy soil. Continuing research needs. If you have been experimenting with green manures, please send me whatever information you have put together [Ed: Please send a copy to ECHO too]. I think the most important subjects we need to learn more about are:

• (1) What legumes will work above 1,800 meters?

• (2) What additional plants will work at any elevation?

• (3) What green manures will work best under wet tropical conditions?

• (4) In what ways must these recommendations be modified for areasoutside of the caribbean basin area from which they have come?

Martin speaking now ... Thanks a million Rolland. ECHO will send a small packet of any seed mentioned in this article. If you want to buy larger quantities we will try to find a source. We also have the "90" day " velvet bean that was grown in the southeastern part of the USA 50 years ago. At the time of the last corn cultivation farmers would plant this velvet bean. Both corn and beans were left in the field. Cattle were allowed to feed in the fields a couple of hours each day in the fall and winter, reportedly getting very fat. This variety is not sensitive to day length so produces 3 months after planting. The tropical kind only produces when days are short (flowering starts in November at ECHO). The 90 day kind has some of the itch-producing hairs Rolland refers to, but not nearly as many as I have seen on the wild "pica-pica" in Honduras.

to previous section to next section

[Ukrainian]  [English]  [Russian]