Change to Ukrainian interface versionChange to English interface versionChange to Russian interface versionHome pageClear last query resultsHelp page
Search for specific termsBrowse by subject categoryBrowse alphabetical list of titlesBrowse by organizationBrowse special topic issues

close this bookAbstracts on Sustainable Agriculture (GTZ; 1992; 423 pages)
Open this folder and view contentsAbstracts On Traditional Land-Use Systems
Open this folder and view contentsAbstracts on farming systems research and development
Open this folder and view contentsAbstracts on integrated systems
Open this folder and view contentsAbstracts on cropping system
Open this folder and view contentsAbstracts on agroecology
Open this folder and view contentsAbstracts on agrometeorology
Open this folder and view contentsAbstracts on agroforestry
Open this folder and view contentsAbstracts on homegardens
Open this folder and view contentsAbstracts on seed production
Open this folder and view contentsAbstracts on plant protection
close this folderAbstracts on water management
View the documentAcknowledgements
View the document1. Water management.
View the document2. Crop diversification in irrigated agriculture: water management constraints.
View the document3. Steam corridors in watershed management
View the document4. Water harvesting.
View the document5. An economic analysis of irrigation systems.
View the document6. Production of annual crops on microcatchments.
View the document7. Problems and lessons from irrigation projects in less developed countries of Africa.
View the document8. Irrigation organization and management.
View the document9. Soil water balance in the Sudano-Sahelian zone: summary proceedings of an international workshop. (bilan hydrique en zone Soudano-Sahelienne: comptes rendus d'un Atelier international)
View the document10. Vanishing land and water.
View the document11. Water use by legumes and its effect on soil water status.
View the document12. Environmental impact assessment for sustainable development: chittaurgarh irrigation project in outer Himalayas.
View the document13. Production and water use of several food and fodder crops under irrigation in the desert area of southwestern Peru.
View the document14. Evaluation of the on-farm water management project in the Dominican republic.
Open this folder and view contentsAbstracts on soil fertility
Open this folder and view contentsAbstracts on erosion and desertification control
Open this folder and view contentsAbstracts on potential crops for marginal lands
 

3. Steam corridors in watershed management

Publication of DESFIL; prepared for USAID under contract number 527-0000-C-00-7841-00; Development Strategies for Fragile Lands, 7250 Woodmont Avenue, Suite 200, Bethesda, Maryland 20814; 1989, 15 p.

Increasing human pressure on the land has accelerated soil erosion, reduced production and income levels, and created scarcities of wood and loss of natural systems. In practice, watershed management has focused on reforestation of degraded areas, on-farm soil conservation, and "works of art".

Interventions are rarely based on an integrated management plan addressing whether or where they are needed, if they are cost effective, or how they fit into an integrated management plan. Failure to distinguish in the field between relatively uncontrollable natural erosion processes and those that are accelerated by human activities can be costly and threatens the credibility of management approaches.

This paper specifically addresses the management of stream corridors.

Sediments from uplands, together with materials excavated by streams themselves, move through a network of stream corridors. How these corridors are managed is critical to the achievement of both local and downstream benefits from overall watershed management activities.

Stream corridors form the transitional zone of significant interaction between a terrestrial and an aquatic ecosystem.

Stream corridor management includes the maintenance of riparian and instream vegetation and maintenance of overall channel morphology with its obstructions, rapids, meanders and adjacent wetlands. These actions together result in:

 

- Filtering of sediments contained in overland runoff;
- Reduction in bank erosion;
- Attenuation of flood peaks;
- Control of eutrophication in headwater streams;
- More productive fisheries; and
- Maintenance of the diversity of stream corridor ecosystems.

Stream corridor management is most effective in delivering these benefits if integrated into an overall program of watershed management.

Effective management of headwater streams offers higher benefits per stream segment affected. If headwater stream corridors are neglected, management of river segments in the lower reaches of a watershed will be less effective.

Financial resources are never sufficient to permit all possible management interventions in watersheds thousands of hectares in extent.

Scarce resources must be allocated to those activities which together contribute most to overall system maintenance, the well-being of local populations, and to downstream water resource users. Stream corridor management, particularly along smaller streams in both upper watersheds and lowlands, can be a cost-effective contribution to a watershed management program.

An integrated two-step ecological engineering approach to stream corridor management is recommended. First is the establishment or preservation of the filtering capacity of the corridor vegetation that serves as the buffer between the stream itself and the rest of the watershed. Second is the maintenance of the biological and physical integrity of the stream ecosystem itself. This involves protecting the stream from such direct impacts as channelization, waste dumping, and livestock watering. If both steps are effective in maintaining the integrity of the corridor with its riparian and aquatic components, then the maximum range of goods and services of local or downstream value (fisheries and wildlife, recreation, water for domestic, agricultural and industrial use, and waste removal and treatment) can be provided.

Smaller streams, because they compose a major proportion of the length of channels in a watershed, serve as the major area of interface between stream corridors and the surrounding watersheds.

The purpose of this paper was to demonstrate how stream corridor management plays an integral role in the management of watersheds for sustainable development. Stream corridors are among the most fragile elements of upper watersheds, both in mountainous areas and in the upper reaches of streams in the wet tropical lowlands. In addition to the multiple values represented by stream corridors, these areas are a magnet to conflicting uses. How human needs for food can be met while maintaining other values both on site and downstream has been our concern. Among the use strategies advocated for fragile lands has been the modification of existing small farm production activities by introducing tree-based agroforestry and silvopastoral systems to produce food and raw materials from combinations of annual and perennial cropping and livestock. These uses are complementary to, and may even be included among, the uses advocated for stream corridors.

1226 92 - 11/47

Water management

Review, Mexico, India, Iran, Pakistan, Australia, water harvesting systems, case examples, catchment areas, water storage, water harvesting constraints, water harvesting strategies, water quality, sources of water, precipitation, knowledge gaps, FAO

THAMES, J.L.

to previous section to next section

[Ukrainian]  [English]  [Russian]