Change to Ukrainian interface versionChange to English interface versionChange to Russian interface versionHome pageClear last query resultsHelp page
Search for specific termsBrowse by subject categoryBrowse alphabetical list of titlesBrowse by organizationBrowse special topic issues

close this bookAbstracts on Sustainable Agriculture (GTZ; 1992; 423 pages)
Open this folder and view contentsAbstracts On Traditional Land-Use Systems
Open this folder and view contentsAbstracts on farming systems research and development
close this folderAbstracts on integrated systems
View the documentAcknowledgements
View the document1. Intensive sustainable livestock production: an alternative to tropical deforestation.
View the document2. Utilization of the african giant land snail in the humid area of nigeria.
View the document3. Important issues of small-holder livestock sector worldwide.
View the document4. Small ruminant production in developing countries.
View the document5. Microlivestock little-known small animals with a promising economic future.
View the document6. Assisting African livestock keepers.
View the document7. Deer farming.
View the document8. Economic constraints on sheep and goat production in developing countries.
View the document9. Sheep. Pigs.
View the document10. Strategies to increase sheep production in East Africa.
View the document11. Alternatives to imported compound feeds for growing pigs in solomon islands.
View the document12. Economic analysis of on-farm dairy animal research and its relevance to development.
View the document13. Grazing management: science into practice.
View the document14. Fish-farming in sub-Saharan Africa: case studies in the francophone countries - proposals for future action.
View the document15. Research and education for the development of integrated crop-livestock-fish farming systems in the tropics.
View the document16. Goats/fish integrated farming in the philippines.
View the document17. The sustainability of aquaculture as a farm enterprise in Rwanda.
View the document18. Double-cropping malaysian prawns, macrobrachium rosenbergii, and red swamp crawfish, procambarus clarkii.
View the document19. Rice/fish farming in Malaysia: a resource optimization
View the document20. Biotechnology in fishfarms: integrated farming or transgenic fish?
View the document21. Agricultural engineering in the development: tillage for crop production in areas of low rainfall.
Open this folder and view contentsAbstracts on cropping system
Open this folder and view contentsAbstracts on agroecology
Open this folder and view contentsAbstracts on agrometeorology
Open this folder and view contentsAbstracts on agroforestry
Open this folder and view contentsAbstracts on homegardens
Open this folder and view contentsAbstracts on seed production
Open this folder and view contentsAbstracts on plant protection
Open this folder and view contentsAbstracts on water management
Open this folder and view contentsAbstracts on soil fertility
Open this folder and view contentsAbstracts on erosion and desertification control
Open this folder and view contentsAbstracts on potential crops for marginal lands
 

19. Rice/fish farming in Malaysia: a resource optimization

AMBIO, 19, 8, 1990, pp. 404-407

This paper summarizes and discusses the ecology as well as rice/fish farming system as practiced in North Kerian, Perak, Malaysia.

In Malaysia, where arable land is limited, integrated farming systems are widely practiced to optimize land use. Integrated rice/capture-fish farming is an example and is an important source of freshwater fish.

Capture-fish farming is practiced in North Kerian, Perak, Malaysia, where wild fish are retained and grown in the rice fields and later harvested at the end of the rice-growing season. Sump ponds, dug at the lowest part of the rice fields, provide refuges for fish during periods of low water availability or quality and facilitate fish harvest.

Before the early 1970s, when single cropping of rice was practiced, the system was the major supplier of freshwater fish, especially snakeskin gouramy (Trichogaster pectoralis), catfish (Clarias macrocephalus), and snakehead (Channa striata). But when double cropping of rice began in the 1970s followed by the widespread use of herbicides and pesticides, fish harvest began to decline.

The system described here requires no biological and little economic input, and native fish are found to be both biologically and economically suitable. The system can utilize different specific habitats, the fish are tolerant to extreme physiochemical changes, and command good market prices. The different feeding habits of the predatory snakehead (Channa striata), omnivorous catfish (Clarias macrocephalus), insectivorous climbing perch (Anabas testudineus), and plantivorous-omnivorous gouramies (Trichogaster pectoralis and T. trichopterus) indicate possible yield improvements through rice/fish polyculture. Aquatic productivity of the prevailing ecosystem is low despite repeated seasonal fertilization. Productivity is probably low due to shading and competition with aquatic weeds and rice plants.

Zooplankton is not readily available to the fish larvae and fingerlings because aquatic weeds provide easy refuge. This lack of food results in fish below marketable size. The short growing season resulting from double cropping, coupled with widespread use of herbicides and pesticides, also affects fish production.

The shorter growing due to double cropping of rice cannot be avoided since it is the policy of the government to increase rice yields.

Increasing the system's productivity is the only way to increase fish yields.

Integration of other farming activities into the rice/fish-capture farming system are being tried in order to fully optimize land use.

Extra income could be obtained by properly planting the large dikes surrounding sump ponds with valuable fruit trees such as coconuts (Cocos nucifera), bananas (Musa spp.) and mangoes (Mangifera spp.).

Farmers also planted the perimeter dikes with produce such as tapioca (Manihot spp.),squash (Cucurbita spp.), and sweet potato (Ipomea batatas) that can either be used at home or sold at the local market.

These and other activities are a recent addition to the traditional rice/fish-farming system and further investigations should be undertaken to determine their economic feasibility.

1088 92 - 3/138

Integrated systems

Review, fishfarms, farming, biotechnology, transgenic fish, aquacultural genetics, feed conversion, environmental impact

BIOTECHNOLOGY AND DEVELOPMENT MONITOR

to previous section to next section

[Ukrainian]  [English]  [Russian]