Change to Ukrainian interface versionChange to English interface versionChange to Russian interface versionHome pageClear last query resultsHelp page
Search for specific termsBrowse by subject categoryBrowse alphabetical list of titlesBrowse by organizationBrowse special topic issues

close this bookAbstracts on Sustainable Agriculture (GTZ; 1992; 423 pages)
Open this folder and view contentsAbstracts On Traditional Land-Use Systems
Open this folder and view contentsAbstracts on farming systems research and development
Open this folder and view contentsAbstracts on integrated systems
close this folderAbstracts on cropping system
View the documentAcknowledgements
View the document1. Green manure crops in irrigated and rainfed lowland rice-based cropping systems in south Asia.
View the document2. Comparative evaluation of some inter-cropping systems in the humid tropics of southern nigeria.
View the document3. Intercropping improves land-use efficiency.
View the document4. A new maize modernizes savanna farming.
View the document5. Analysis of the environmental component of genotype x environment interaction in crop adaptation evaluation.
View the document6. Climatic analyses and cropping systems in the semiarid tropics.
View the document7. Field crop production in tropical Africa.
View the document8. The cultivated plants of the tropics and subtropics.
View the document9. Software system for plant growth prediction.
View the document10. Flood-tolerant crops for low-input sustainable agriculture in the everglades agricultural area.
View the document11. The physiology of tropical production.
View the document12. Achieving sustainability in cropping systems: the labour requirements of a mulch rotation system in Kalimantan, Indonesia.
View the document13. Grain yield responses in rice to eight tropical green manures.
View the document14. Utilization efficiency of applied nitrogen as related to yield advantage in maize/mungbean intercropping.
View the document15. Effects of two underseed species, medicago polymorpha l. And scorpiurus muricatus l.,on the yield of main crop (durum wheat) and subsequent crop (teff) under humid moisture regimes in Ethiopia.
View the document16. Characterization and environment-management relationships in beans and sorghum intercropped with maize in honduras. (caracterizacion y relaciones ambiente-manejo en sistemas de frijol y sorgo asociados con maiz en Honduras.)
View the document17. Production potential of pigeonpea/pearl millet intercropping system in rainfed diara (floodprone) areas of eastern uttar pradesh, India.
View the document18. Effect of mixed cropping lentil with barley at different seeding rates.
View the document19. Yield performance and complementarity in mixtures of bread wheat (triticum aestivum l.) And pea (pisum sativum l.).
View the document20. Economic feasibility of green manure in rice-based cropping systems.
View the document21. Effect of nitrogen on pigeonpea (cajanus cajan) and rice (oryza sativa) intercropping system.
View the document22. Smallholder cotton cropping practices in Togo.
View the document23. Effect of row arrangement on yield and yield advantages in sorghum/finger millet intercrops.
View the document24. Yield, economics and nutrient balance in cropping systems based on rice (oriza sativa).
View the document25. Mechanisms for overyielding in a sunflower/mustard intercrop.
View the document26. Agronomic modification of competition between cassava and pigeonpea in intercropping.
View the document27. Production and economic evaluation of white guinea yam (dioscorea rotundata) minisetts under ridge and bed production systems in a tropical guinea savanna location, Nigeria.
View the document28. Evaluation of intercropping cassava/corn/beans (phaseolus vulgaris l.) In northeast Brazil.
View the document29. Intercropping of sweet potato and legumes.
View the document30. Cassava in shifting cultivation. - a system approach to agricultural technology development in Africa.-
View the document31. Economic returns from yam/maize intercrops with various stake densities in a high-rainfall area.
View the document32. Performance of three centrosema spp. And pueraria phaseoloides in grazed associations with andropogon gayanus in the eastern plains of Colombia.
View the document33. Barley, lentil, and flax yield under different intercropping systems.
View the document34. Biological potential and economic feasibility of intercropping oilseeds and pulses with safflower (carthamus tinctorius) in drylands.
View the document35. Screening of different tropical legumes in monoculture and in association with cassava for adaption to acid infertile and high al-content soil.
View the document36. Intercropping studies in peanut (arachis hypogaea l.).
View the document37. Intercropping of rainfed groundnut (arachis hypogaea) with annual oilseed crops under different planting patterns.
View the document38. Resource use and plant interactions in a rice-mungbean intercrop.
View the document39. Cassava/legume intercropping with contrasting cassava cultivars. Part I
View the document40. Cassava/legume intercropping with contrasting cassava cultivars. Part II
View the document41. A post-green revolution strategy for the improvement of small farmer-grown common beans.
Open this folder and view contentsAbstracts on agroecology
Open this folder and view contentsAbstracts on agrometeorology
Open this folder and view contentsAbstracts on agroforestry
Open this folder and view contentsAbstracts on homegardens
Open this folder and view contentsAbstracts on seed production
Open this folder and view contentsAbstracts on plant protection
Open this folder and view contentsAbstracts on water management
Open this folder and view contentsAbstracts on soil fertility
Open this folder and view contentsAbstracts on erosion and desertification control
Open this folder and view contentsAbstracts on potential crops for marginal lands
 

11. The physiology of tropical production.

CAB INTERNATIONAL, UK.; ISBN 0-85198-677-3; 1990, paperback, £13.95

This is an excellent book that examines the way the physiological processes of tropical crops are influenced by environmental factors, namely solar radiation, temperature, photoperiod, saturation deficit, soil water and nutrients.

The effects of plant population density are also considered. The work is based largely on the research funded by the UK Overseas Development Administration which examined the physiological control of yield of pearl millet, grain sorghum and groundnut by temperature and drought.

The subject matter in this book is extended to cover more physiological processes and environmental factors (e.g. nutrients) and more tropical crops (including maize, sugarcane, pigeon pea, cassava, tea and oil palm). To keep the book to a workable size, the research presented is selective, with examples largely from developing countries in the tropics. This does not detract from the value of the book, and it is a valuable contribution to tropical crop physiology.

The physiology of yield is examined in terms of four types of process - development, expansion, productivity (both in terms of solar radiation intercepted and water transpired) and partitioning of dry matter.

Throughout the text, the effects of solar radiation, temperature, water and nutrients on these processes are examined in terms of a duration and a mean rate. For example, leaf canopy development is examined in terms of an expansion rate governed largely by temperature and a duration governed largely by temperature and photoperiod. Then, restrictions to the rate and duration of leaf canopy development due to solar radiation, saturation deficit, water and nutrient supply are considered.

The first five chapters of the book consider the key physiological processes. The chapter titles are: 1. Control of Development; 2. The Leaf Canopy and Root System; 3. Dry Matter Production by Interception and Conversion of Solar Radiation; 4. Transpiration and Dry Matter Production; and 5. Partition of Assimilate. The final chapter (6. Environmental and Physiological Control of Yield) attempts to draw together the responses of crops to environment and cultivation. Yield is analysed in terms of supply-limitation (water-limited) and demand-limitation (radiation-limited). Then, the physiological responses to nutrients, plant population density and mixed cropping are considered, and finally, species are compared in terms of their main physiological attributes.

Perhaps one disappointment with the book is its lack of application of the physiological understanding to the solution of agricultural problems. The main value of the physiological understanding, described so well in the book, is in the development of crop growth simulation models. Given that most crops in the tropics are grown under variable and relatively unpredictable environmental conditions, it is impossible to sample sufficient growing seasons to obtain the mean response and assess the climatic risk to production, using conventional field experimentation. Consequently crop physiologists should view crop simulation as an adjunct to field experimentation. It would have rounded the book off nicely if a final chapter had been devoted to the application of this physiological knowledge.

Abstract by R.C. MUCHOW, shortened

1101 92 - 4/144

Cropping systems

Asia, Indonesia, study, cropping systems, labour requirements, mulch rotation system, sustainable systems, deforestation

LORENZ, C. and A. ERRINGTON

to previous section to next section

[Ukrainian]  [English]  [Russian]