Change to Ukrainian interface versionChange to English interface versionChange to Russian interface versionHome pageClear last query resultsHelp page
Search for specific termsBrowse by subject categoryBrowse alphabetical list of titlesBrowse by organizationBrowse special topic issues

close this bookAbstracts on Sustainable Agriculture (GTZ; 1992; 423 pages)
Open this folder and view contentsAbstracts On Traditional Land-Use Systems
Open this folder and view contentsAbstracts on farming systems research and development
Open this folder and view contentsAbstracts on integrated systems
close this folderAbstracts on cropping system
View the documentAcknowledgements
View the document1. Green manure crops in irrigated and rainfed lowland rice-based cropping systems in south Asia.
View the document2. Comparative evaluation of some inter-cropping systems in the humid tropics of southern nigeria.
View the document3. Intercropping improves land-use efficiency.
View the document4. A new maize modernizes savanna farming.
View the document5. Analysis of the environmental component of genotype x environment interaction in crop adaptation evaluation.
View the document6. Climatic analyses and cropping systems in the semiarid tropics.
View the document7. Field crop production in tropical Africa.
View the document8. The cultivated plants of the tropics and subtropics.
View the document9. Software system for plant growth prediction.
View the document10. Flood-tolerant crops for low-input sustainable agriculture in the everglades agricultural area.
View the document11. The physiology of tropical production.
View the document12. Achieving sustainability in cropping systems: the labour requirements of a mulch rotation system in Kalimantan, Indonesia.
View the document13. Grain yield responses in rice to eight tropical green manures.
View the document14. Utilization efficiency of applied nitrogen as related to yield advantage in maize/mungbean intercropping.
View the document15. Effects of two underseed species, medicago polymorpha l. And scorpiurus muricatus l.,on the yield of main crop (durum wheat) and subsequent crop (teff) under humid moisture regimes in Ethiopia.
View the document16. Characterization and environment-management relationships in beans and sorghum intercropped with maize in honduras. (caracterizacion y relaciones ambiente-manejo en sistemas de frijol y sorgo asociados con maiz en Honduras.)
View the document17. Production potential of pigeonpea/pearl millet intercropping system in rainfed diara (floodprone) areas of eastern uttar pradesh, India.
View the document18. Effect of mixed cropping lentil with barley at different seeding rates.
View the document19. Yield performance and complementarity in mixtures of bread wheat (triticum aestivum l.) And pea (pisum sativum l.).
View the document20. Economic feasibility of green manure in rice-based cropping systems.
View the document21. Effect of nitrogen on pigeonpea (cajanus cajan) and rice (oryza sativa) intercropping system.
View the document22. Smallholder cotton cropping practices in Togo.
View the document23. Effect of row arrangement on yield and yield advantages in sorghum/finger millet intercrops.
View the document24. Yield, economics and nutrient balance in cropping systems based on rice (oriza sativa).
View the document25. Mechanisms for overyielding in a sunflower/mustard intercrop.
View the document26. Agronomic modification of competition between cassava and pigeonpea in intercropping.
View the document27. Production and economic evaluation of white guinea yam (dioscorea rotundata) minisetts under ridge and bed production systems in a tropical guinea savanna location, Nigeria.
View the document28. Evaluation of intercropping cassava/corn/beans (phaseolus vulgaris l.) In northeast Brazil.
View the document29. Intercropping of sweet potato and legumes.
View the document30. Cassava in shifting cultivation. - a system approach to agricultural technology development in Africa.-
View the document31. Economic returns from yam/maize intercrops with various stake densities in a high-rainfall area.
View the document32. Performance of three centrosema spp. And pueraria phaseoloides in grazed associations with andropogon gayanus in the eastern plains of Colombia.
View the document33. Barley, lentil, and flax yield under different intercropping systems.
View the document34. Biological potential and economic feasibility of intercropping oilseeds and pulses with safflower (carthamus tinctorius) in drylands.
View the document35. Screening of different tropical legumes in monoculture and in association with cassava for adaption to acid infertile and high al-content soil.
View the document36. Intercropping studies in peanut (arachis hypogaea l.).
View the document37. Intercropping of rainfed groundnut (arachis hypogaea) with annual oilseed crops under different planting patterns.
View the document38. Resource use and plant interactions in a rice-mungbean intercrop.
View the document39. Cassava/legume intercropping with contrasting cassava cultivars. Part I
View the document40. Cassava/legume intercropping with contrasting cassava cultivars. Part II
View the document41. A post-green revolution strategy for the improvement of small farmer-grown common beans.
Open this folder and view contentsAbstracts on agroecology
Open this folder and view contentsAbstracts on agrometeorology
Open this folder and view contentsAbstracts on agroforestry
Open this folder and view contentsAbstracts on homegardens
Open this folder and view contentsAbstracts on seed production
Open this folder and view contentsAbstracts on plant protection
Open this folder and view contentsAbstracts on water management
Open this folder and view contentsAbstracts on soil fertility
Open this folder and view contentsAbstracts on erosion and desertification control
Open this folder and view contentsAbstracts on potential crops for marginal lands

1. Green manure crops in irrigated and rainfed lowland rice-based cropping systems in south Asia.

In: Proc. of a Symposium on Sustainable Agriculture, IRRI, Philippines,

ISBN 97-104-189-8, 1988, pp. 72-82

Green manuring is the practice of incorporating in situ easily decomposable plant material either from crops grown specifically for organic fertilizer or plant materials brought from outside the field. In situ green manuring is done by turning under the entire plant, usually a leguminous crop. When brought from outside, the green matter may consist of leaves, twigs, and loppings from selected trees or bushes.

Increased food production must come primarily through increased crop productivity and increased cropping intensity. In India, food production has nearly doubled in the last two decades. This has been achieved through the adoption of high-yielding crop varieties, intensive cropping, and improved management practices, including improved fertilizer use.

Nearly one-third of the total N consumed in Indian farming is used for rice. Rice is grown over an area of about 40 million ha. A considerable fraction of the P and K fertilizer used is also for rice. Fertilizer production in India lags behind actual consumption, compelling large imports worth more than US$ 1 billion annually. The increase in fertilizer prices combined with the low purchasing power of farmers is imposing serious limitations on increased crop production and calls for increased efforts to mobilize cheaper and alternative sources of nutrients.

The advent of high-yielding crop varieties in recent years caused organic manure use to decline in favor of mineral fertilizers. There is renewed interest in organic manure, largely because increasing costs of fertilizers, greater incidence of multiple nutrient deficiencies, and deterioration in physical soil properties are resulting in reduced yields.

Farmyard manure, compost, and green manure are the organic materials commonly used. Because the availability of farmyard manure and compost is limited, green manure offers greater potential as a feasible and cheaper substitute for fertilizer N.

Green manuring techniques differ in rice-growing regions. The various techniques are described in this paper.

Research shows almost universal beneficial effects of green manuring on rice yields. Green manure can substitute for up to 60-100 kg fertilizer

N/ha. Many studies have shown it can enhance the availability of native or applied P and of micronutrients. Green manuring hastens the reclamation of alkali soils, largely because increased CO2-production during decomposition of the green manure crop enhances the solubility of lime.

An alternative to growing a crop exclusively for green manure is to grow a short-duration pulse (e.g., mungbean Vigna radiata, cowpea V. sinensis) for a green pod harvest and straw incorporation.

Although the value of green manuring for increasing rice production by supplying nutrients and maintaining soil productivity is well established, the practice has not been widely adopted by rice farmers.

Farmers are unable to appreciate the benefits of green manuring, since the benefits sometimes are not as spectacular as those observed from direct application of inorganic fertilizers.

Green manuring has a large potential to augment nutrient supplies.

Improved experimentation is needed so that crop responses to green manuring can be quantified. The factors responsible for crop responses must be identified to develop sound scientific strategies for green manuring practices.

The patterns of nutrient release during green manure decomposition and the patterns of rice crop utilization need to be better understood. The long-term effects of green manuring on soil properties and crop responses need evaluation. Knowledge of the changes in soil physical properties would be particularly valuable. Organic matter decomposition sets up a chain of physiochemical events which alter the form and availability of several nutrient elements. Green manuring has a special place in problem soils of low fertility and those with alkali problems.

Identification of species or strains that accumulate high N or biomass is another research area of importance.

1091 92 - 4/134

Cropping systems

Africa, Nigeria, humid tropics, lowlands, study, field trials, intercropping systems, maize, melon, yam, soil water content, soil temperature, root length, crop performance


to previous section to next section

[Ukrainian]  [English]  [Russian]