Change to Ukrainian interface versionChange to English interface versionChange to Russian interface versionHome pageClear last query resultsHelp page
Search for specific termsBrowse by subject categoryBrowse alphabetical list of titlesBrowse by organizationBrowse special topic issues

close this bookAbstracts on Sustainable Agriculture (GTZ; 1992; 423 pages)
Open this folder and view contentsAbstracts On Traditional Land-Use Systems
Open this folder and view contentsAbstracts on farming systems research and development
Open this folder and view contentsAbstracts on integrated systems
close this folderAbstracts on cropping system
View the documentAcknowledgements
View the document1. Green manure crops in irrigated and rainfed lowland rice-based cropping systems in south Asia.
View the document2. Comparative evaluation of some inter-cropping systems in the humid tropics of southern nigeria.
View the document3. Intercropping improves land-use efficiency.
View the document4. A new maize modernizes savanna farming.
View the document5. Analysis of the environmental component of genotype x environment interaction in crop adaptation evaluation.
View the document6. Climatic analyses and cropping systems in the semiarid tropics.
View the document7. Field crop production in tropical Africa.
View the document8. The cultivated plants of the tropics and subtropics.
View the document9. Software system for plant growth prediction.
View the document10. Flood-tolerant crops for low-input sustainable agriculture in the everglades agricultural area.
View the document11. The physiology of tropical production.
View the document12. Achieving sustainability in cropping systems: the labour requirements of a mulch rotation system in Kalimantan, Indonesia.
View the document13. Grain yield responses in rice to eight tropical green manures.
View the document14. Utilization efficiency of applied nitrogen as related to yield advantage in maize/mungbean intercropping.
View the document15. Effects of two underseed species, medicago polymorpha l. And scorpiurus muricatus l.,on the yield of main crop (durum wheat) and subsequent crop (teff) under humid moisture regimes in Ethiopia.
View the document16. Characterization and environment-management relationships in beans and sorghum intercropped with maize in honduras. (caracterizacion y relaciones ambiente-manejo en sistemas de frijol y sorgo asociados con maiz en Honduras.)
View the document17. Production potential of pigeonpea/pearl millet intercropping system in rainfed diara (floodprone) areas of eastern uttar pradesh, India.
View the document18. Effect of mixed cropping lentil with barley at different seeding rates.
View the document19. Yield performance and complementarity in mixtures of bread wheat (triticum aestivum l.) And pea (pisum sativum l.).
View the document20. Economic feasibility of green manure in rice-based cropping systems.
View the document21. Effect of nitrogen on pigeonpea (cajanus cajan) and rice (oryza sativa) intercropping system.
View the document22. Smallholder cotton cropping practices in Togo.
View the document23. Effect of row arrangement on yield and yield advantages in sorghum/finger millet intercrops.
View the document24. Yield, economics and nutrient balance in cropping systems based on rice (oriza sativa).
View the document25. Mechanisms for overyielding in a sunflower/mustard intercrop.
View the document26. Agronomic modification of competition between cassava and pigeonpea in intercropping.
View the document27. Production and economic evaluation of white guinea yam (dioscorea rotundata) minisetts under ridge and bed production systems in a tropical guinea savanna location, Nigeria.
View the document28. Evaluation of intercropping cassava/corn/beans (phaseolus vulgaris l.) In northeast Brazil.
View the document29. Intercropping of sweet potato and legumes.
View the document30. Cassava in shifting cultivation. - a system approach to agricultural technology development in Africa.-
View the document31. Economic returns from yam/maize intercrops with various stake densities in a high-rainfall area.
View the document32. Performance of three centrosema spp. And pueraria phaseoloides in grazed associations with andropogon gayanus in the eastern plains of Colombia.
View the document33. Barley, lentil, and flax yield under different intercropping systems.
View the document34. Biological potential and economic feasibility of intercropping oilseeds and pulses with safflower (carthamus tinctorius) in drylands.
View the document35. Screening of different tropical legumes in monoculture and in association with cassava for adaption to acid infertile and high al-content soil.
View the document36. Intercropping studies in peanut (arachis hypogaea l.).
View the document37. Intercropping of rainfed groundnut (arachis hypogaea) with annual oilseed crops under different planting patterns.
View the document38. Resource use and plant interactions in a rice-mungbean intercrop.
View the document39. Cassava/legume intercropping with contrasting cassava cultivars. Part I
View the document40. Cassava/legume intercropping with contrasting cassava cultivars. Part II
View the document41. A post-green revolution strategy for the improvement of small farmer-grown common beans.
Open this folder and view contentsAbstracts on agroecology
Open this folder and view contentsAbstracts on agrometeorology
Open this folder and view contentsAbstracts on agroforestry
Open this folder and view contentsAbstracts on homegardens
Open this folder and view contentsAbstracts on seed production
Open this folder and view contentsAbstracts on plant protection
Open this folder and view contentsAbstracts on water management
Open this folder and view contentsAbstracts on soil fertility
Open this folder and view contentsAbstracts on erosion and desertification control
Open this folder and view contentsAbstracts on potential crops for marginal lands

25. Mechanisms for overyielding in a sunflower/mustard intercrop.

Agronomy J., 84, 1992, pp. 188-194

The objectives of this study were to verify the occurence of overyielding and to examine patterns of N and water use as possible mechanisms for over-yielding in sunflower/mustard intercrops. Secondary objectives were to examine the effect of N fertilizers and intercrop structure (planting pattern) on intercrop resource use and yield advantage. It is hypothesized that the lack of competition between species for a significant resource (the competitive production principle) was a cause of previously observed advantages in this intercrop system.

Two intercrop patterns and sole crops of mustard (Brassica hirta Moench) and sunflower (Helianthus annuus L.) were planted in 1988 and 1989 on a silt loam soil to examine mechanisms for overyielding in this intercrop system.

A strip intercrop pattern where 2.28-m strips of sunflower (76-cm rows) alternated with 2.28-m strips of mustard (15-cm rows) was compared with a more intimate row intercrop pattern of 76-cm sunflower rows interplanted with four 15-cm rows of mustard. Nitrogen was applied at planting at 0 or 112 kg N ha-1 to whole plots, with planting patterns allocated to subplots in a split-plot design. Soil water content, nitrate N, and total N were measured at different locations and depths in the intercrop and sole crop patterns during the growing season.

Mustard rows adjacent to sunflower in the strip intercrop yielded an average of 61% more than sole crop rows. Sunflower rows adjacent to mustard in the strip intercrop yielded an average of 40% more than sole crop rows. Yields of both sunflower and mustard were lower in the row intercrop compared with respective sole crops. Land equivalent ratios ranged from 0.96 to 1.43 in the strip intercrop and were generally below 1.0 in the row intercrop. Application of N did not consistently affect

LER. Soil depletion patterns indicated that border rows of mustard obtained both soil water and N from the strips planted to sunflower at a time when demand for these reources by sunflower was low. Sunflower border rows obtained water and N from mustard strips later in the season.

Concluding, intercropping, although an inexpensive technology, is an intensification of management. In the sunflower-producing areas of the northern Midwest of USA, extensive management practices are more common.

Although previous studies confirm that strip intercropping of the two species potentially could increase yield, few producers are currently using this technique. This may be due partly to the minor crop status of both crops in this region, but other Cruciferae, such as canola (Brassica napus L. or Brassica campestris L.), are also candidates for this type of strip intercrop system with sunflower.

The strip intercrop used in this study was narrower than would be practical for equipment used currently in the sunflower-producing regions of the USA.

Other management practices, such as tillage, weed control, diseases, insects, harvesting, and timing of agronomic practices, must also be considered. Mustard is a crop that requires a fine seedbed, and sunflower, though less exacting, is compatible with mustard in this respect. Both crops are planted early, although sunflower could be planted later in a strip arrangement.

There is no evidence in the field trials that disease or insect infestation differed in the intercrops compared with the monocultures.

In summary, there are potential yield and land-use advantages for the practice of strip intercropping but not row intercropping of sunflower and mustard. Complementary use of water and N over time are implicated as causes of overyielding exhibited by both species in this pattern. The creation of border areas between species through strip intercropping resulted in areas of excess soil N and water (compared with sole crops) that could be used by border rows of the companion crop during critical times of development, producing a border row yield advantage. This overyielding could be applied to mechanized systems if cropping intensification is wanted.

1115 92 - 4/158

Cropping systems

Australia, field trial, intercropping, cassava, pigeonpea, agronomic practices, land equivalent ratio, crop productivity


to previous section to next section

[Ukrainian]  [English]  [Russian]