Change to Ukrainian interface versionChange to English interface versionChange to Russian interface versionHome pageClear last query resultsHelp page
Search for specific termsBrowse by subject categoryBrowse alphabetical list of titlesBrowse by organizationBrowse special topic issues

close this bookAbstracts on Sustainable Agriculture (GTZ; 1992; 423 pages)
Open this folder and view contentsAbstracts On Traditional Land-Use Systems
Open this folder and view contentsAbstracts on farming systems research and development
Open this folder and view contentsAbstracts on integrated systems
close this folderAbstracts on cropping system
View the documentAcknowledgements
View the document1. Green manure crops in irrigated and rainfed lowland rice-based cropping systems in south Asia.
View the document2. Comparative evaluation of some inter-cropping systems in the humid tropics of southern nigeria.
View the document3. Intercropping improves land-use efficiency.
View the document4. A new maize modernizes savanna farming.
View the document5. Analysis of the environmental component of genotype x environment interaction in crop adaptation evaluation.
View the document6. Climatic analyses and cropping systems in the semiarid tropics.
View the document7. Field crop production in tropical Africa.
View the document8. The cultivated plants of the tropics and subtropics.
View the document9. Software system for plant growth prediction.
View the document10. Flood-tolerant crops for low-input sustainable agriculture in the everglades agricultural area.
View the document11. The physiology of tropical production.
View the document12. Achieving sustainability in cropping systems: the labour requirements of a mulch rotation system in Kalimantan, Indonesia.
View the document13. Grain yield responses in rice to eight tropical green manures.
View the document14. Utilization efficiency of applied nitrogen as related to yield advantage in maize/mungbean intercropping.
View the document15. Effects of two underseed species, medicago polymorpha l. And scorpiurus muricatus l.,on the yield of main crop (durum wheat) and subsequent crop (teff) under humid moisture regimes in Ethiopia.
View the document16. Characterization and environment-management relationships in beans and sorghum intercropped with maize in honduras. (caracterizacion y relaciones ambiente-manejo en sistemas de frijol y sorgo asociados con maiz en Honduras.)
View the document17. Production potential of pigeonpea/pearl millet intercropping system in rainfed diara (floodprone) areas of eastern uttar pradesh, India.
View the document18. Effect of mixed cropping lentil with barley at different seeding rates.
View the document19. Yield performance and complementarity in mixtures of bread wheat (triticum aestivum l.) And pea (pisum sativum l.).
View the document20. Economic feasibility of green manure in rice-based cropping systems.
View the document21. Effect of nitrogen on pigeonpea (cajanus cajan) and rice (oryza sativa) intercropping system.
View the document22. Smallholder cotton cropping practices in Togo.
View the document23. Effect of row arrangement on yield and yield advantages in sorghum/finger millet intercrops.
View the document24. Yield, economics and nutrient balance in cropping systems based on rice (oriza sativa).
View the document25. Mechanisms for overyielding in a sunflower/mustard intercrop.
View the document26. Agronomic modification of competition between cassava and pigeonpea in intercropping.
View the document27. Production and economic evaluation of white guinea yam (dioscorea rotundata) minisetts under ridge and bed production systems in a tropical guinea savanna location, Nigeria.
View the document28. Evaluation of intercropping cassava/corn/beans (phaseolus vulgaris l.) In northeast Brazil.
View the document29. Intercropping of sweet potato and legumes.
View the document30. Cassava in shifting cultivation. - a system approach to agricultural technology development in Africa.-
View the document31. Economic returns from yam/maize intercrops with various stake densities in a high-rainfall area.
View the document32. Performance of three centrosema spp. And pueraria phaseoloides in grazed associations with andropogon gayanus in the eastern plains of Colombia.
View the document33. Barley, lentil, and flax yield under different intercropping systems.
View the document34. Biological potential and economic feasibility of intercropping oilseeds and pulses with safflower (carthamus tinctorius) in drylands.
View the document35. Screening of different tropical legumes in monoculture and in association with cassava for adaption to acid infertile and high al-content soil.
View the document36. Intercropping studies in peanut (arachis hypogaea l.).
View the document37. Intercropping of rainfed groundnut (arachis hypogaea) with annual oilseed crops under different planting patterns.
View the document38. Resource use and plant interactions in a rice-mungbean intercrop.
View the document39. Cassava/legume intercropping with contrasting cassava cultivars. Part I
View the document40. Cassava/legume intercropping with contrasting cassava cultivars. Part II
View the document41. A post-green revolution strategy for the improvement of small farmer-grown common beans.
Open this folder and view contentsAbstracts on agroecology
Open this folder and view contentsAbstracts on agrometeorology
Open this folder and view contentsAbstracts on agroforestry
Open this folder and view contentsAbstracts on homegardens
Open this folder and view contentsAbstracts on seed production
Open this folder and view contentsAbstracts on plant protection
Open this folder and view contentsAbstracts on water management
Open this folder and view contentsAbstracts on soil fertility
Open this folder and view contentsAbstracts on erosion and desertification control
Open this folder and view contentsAbstracts on potential crops for marginal lands

26. Agronomic modification of competition between cassava and pigeonpea in intercropping.

Field Crops Res., 30, 1992, pp. 131-146

The objective of the study was to gain better understanding of how competitiveness of component species in cassava intercropping is determined and modified by agronomic practice when a long-season crop (pigeonpea) is used in association. Two cassava cultivars of contrasting canopy size were used, in addition to the variation in time of sowing and plant density of pigeonpea, to vary further the competitive ability of cassava.

In all intercropping treatments, radiation interception by the combined canopy increased rapidly, and full ground was maintained up to pigeonpea harvest (ca. 100 days). When pigeonpea was planted simultaneously with cassava, it became taller than cassava and its canopy occupied most of the cassava interrow space. When it was sown 35 days later than cassava, then cassava cultivar MCol 1468, which was tall and had a large canopy, dominated pigeonpea almost completely, whereas the smaller cultivar M 19 occupied up to only about half the total interrow area. Pigeonpea at high plant density (based on four rows between cassava rows) had similar height to that at low density (based on two rows), but its canopy occupied more interrow space and enhanced its competitiveness. The canopy width during the time of the complete ground cover was directly related to total dry-matter production and partial land equivalent ratio (LER) for economic yield of each component crop. However, cassava LER was more sensitive to reduced cassava canopy width than was pigeonpea LER, and higher total LER was obtained when a large cassava canopy width was maintained.

The results suggest that when cassava is intercropped with a crop of high competitiveness, agronomic management should be adopted so that the cassava canopy is taller than or about the same height as the associated crop and it occupies most interrow space.

The results also suggest that for high total LER of economic yield, the cassava/pigeonpea intercrop should be managed so that a wide cassava canopy is maintained when the ground is fully covered. This is because cassava LER is more sensitive to reduction in its canopy width than is pigeonpea LER. It appears that when pigeonpea dominates and cassava canopy widths is reduced, tuber growth is reduced.

It is therefore concluded that a vigorous cassava cultivar and late sowing of pigeonpea at a low density can sustain the desirable canopy width and competitiveness for high productivity of cassava/pigeonpea intercropping.

1116 92 - 4/159

Cropping systems

Africa, Nigeria, savanna, study, white Guinea yam, minisetts, production systems, economic evaluation


to previous section to next section

[Ukrainian]  [English]  [Russian]