Change to Ukrainian interface versionChange to English interface versionChange to Russian interface versionHome pageClear last query resultsHelp page
Search for specific termsBrowse by subject categoryBrowse alphabetical list of titlesBrowse by organizationBrowse special topic issues

close this bookAbstracts on Sustainable Agriculture (GTZ; 1992; 423 pages)
Open this folder and view contentsAbstracts On Traditional Land-Use Systems
Open this folder and view contentsAbstracts on farming systems research and development
Open this folder and view contentsAbstracts on integrated systems
close this folderAbstracts on cropping system
View the documentAcknowledgements
View the document1. Green manure crops in irrigated and rainfed lowland rice-based cropping systems in south Asia.
View the document2. Comparative evaluation of some inter-cropping systems in the humid tropics of southern nigeria.
View the document3. Intercropping improves land-use efficiency.
View the document4. A new maize modernizes savanna farming.
View the document5. Analysis of the environmental component of genotype x environment interaction in crop adaptation evaluation.
View the document6. Climatic analyses and cropping systems in the semiarid tropics.
View the document7. Field crop production in tropical Africa.
View the document8. The cultivated plants of the tropics and subtropics.
View the document9. Software system for plant growth prediction.
View the document10. Flood-tolerant crops for low-input sustainable agriculture in the everglades agricultural area.
View the document11. The physiology of tropical production.
View the document12. Achieving sustainability in cropping systems: the labour requirements of a mulch rotation system in Kalimantan, Indonesia.
View the document13. Grain yield responses in rice to eight tropical green manures.
View the document14. Utilization efficiency of applied nitrogen as related to yield advantage in maize/mungbean intercropping.
View the document15. Effects of two underseed species, medicago polymorpha l. And scorpiurus muricatus l.,on the yield of main crop (durum wheat) and subsequent crop (teff) under humid moisture regimes in Ethiopia.
View the document16. Characterization and environment-management relationships in beans and sorghum intercropped with maize in honduras. (caracterizacion y relaciones ambiente-manejo en sistemas de frijol y sorgo asociados con maiz en Honduras.)
View the document17. Production potential of pigeonpea/pearl millet intercropping system in rainfed diara (floodprone) areas of eastern uttar pradesh, India.
View the document18. Effect of mixed cropping lentil with barley at different seeding rates.
View the document19. Yield performance and complementarity in mixtures of bread wheat (triticum aestivum l.) And pea (pisum sativum l.).
View the document20. Economic feasibility of green manure in rice-based cropping systems.
View the document21. Effect of nitrogen on pigeonpea (cajanus cajan) and rice (oryza sativa) intercropping system.
View the document22. Smallholder cotton cropping practices in Togo.
View the document23. Effect of row arrangement on yield and yield advantages in sorghum/finger millet intercrops.
View the document24. Yield, economics and nutrient balance in cropping systems based on rice (oriza sativa).
View the document25. Mechanisms for overyielding in a sunflower/mustard intercrop.
View the document26. Agronomic modification of competition between cassava and pigeonpea in intercropping.
View the document27. Production and economic evaluation of white guinea yam (dioscorea rotundata) minisetts under ridge and bed production systems in a tropical guinea savanna location, Nigeria.
View the document28. Evaluation of intercropping cassava/corn/beans (phaseolus vulgaris l.) In northeast Brazil.
View the document29. Intercropping of sweet potato and legumes.
View the document30. Cassava in shifting cultivation. - a system approach to agricultural technology development in Africa.-
View the document31. Economic returns from yam/maize intercrops with various stake densities in a high-rainfall area.
View the document32. Performance of three centrosema spp. And pueraria phaseoloides in grazed associations with andropogon gayanus in the eastern plains of Colombia.
View the document33. Barley, lentil, and flax yield under different intercropping systems.
View the document34. Biological potential and economic feasibility of intercropping oilseeds and pulses with safflower (carthamus tinctorius) in drylands.
View the document35. Screening of different tropical legumes in monoculture and in association with cassava for adaption to acid infertile and high al-content soil.
View the document36. Intercropping studies in peanut (arachis hypogaea l.).
View the document37. Intercropping of rainfed groundnut (arachis hypogaea) with annual oilseed crops under different planting patterns.
View the document38. Resource use and plant interactions in a rice-mungbean intercrop.
View the document39. Cassava/legume intercropping with contrasting cassava cultivars. Part I
View the document40. Cassava/legume intercropping with contrasting cassava cultivars. Part II
View the document41. A post-green revolution strategy for the improvement of small farmer-grown common beans.
Open this folder and view contentsAbstracts on agroecology
Open this folder and view contentsAbstracts on agrometeorology
Open this folder and view contentsAbstracts on agroforestry
Open this folder and view contentsAbstracts on homegardens
Open this folder and view contentsAbstracts on seed production
Open this folder and view contentsAbstracts on plant protection
Open this folder and view contentsAbstracts on water management
Open this folder and view contentsAbstracts on soil fertility
Open this folder and view contentsAbstracts on erosion and desertification control
Open this folder and view contentsAbstracts on potential crops for marginal lands

2. Comparative evaluation of some inter-cropping systems in the humid tropics of southern nigeria.

Journal of Sustainable Agriculture, 2, (2), 1991, pp. 59-73

The present study was conducted to investigate the effects of intercropping maize with a mixture of melon and yam on soil moisture, soil temperature, rooting characteristics, and productivity of intercrop on an Ultisol in the humid tropical region of southern Nigeria.

Although much attention has been given to intercropping over the last two decades, there has been little research done on the effects of intercropping on soil moisture and temperature, particularly so in mixtures with more than two component crops. Traditionally, farmers in southern Nigeria would grow five or more annual and perennial crops simultaneously.

Field experiments were conducted near Benin City, southern Nigeria.

Before the initiation of the present trial, field plots were under no tillage for 2 years and, therefore, the same system was followed for this investigation also. Three plots, each measuring 30 x 60 m, were marked for intercrop and nine plots, each measuring 8 x 30 m, for sole crops. The intercrop treatment comprised maize, melon and yam. Local cultivars of yam and melon, grown by farmers of the region, were grown for these experiments. Yam sets, weighing 200 to 250 g each, were planted at 1 x 1 m spacings. Melon was planted at 0.5 x 1 m spacings in the yam rows so that there were two melon plants between a pair of yam plants. Maize (cv. TZSR-W in 1987 and TZSR-Y in 1988) was planted between yam + melon rows at 0.3 x 1 m spacings. Planting of crops at a given spacing was carried out on the same day in the intercrop and monoculture plots. After planting, 400 kg ha-1 of 15:15:15 NPK mixture fertilizer was carefully spread on the maize rows alone. One month later, the second dose of N (60 kg ha-1) as calcium ammonium nitrate was side-dressed to maize after thinning to one plant per hill. About 2 months after germination, yam vines were supported with wooden stakes over 3 m long.

At 0.10 m depth, the soil was desiccated most under the intercrop compared with monocrops. The trend changed at 0.30 m depth where minimum soil water was under sole maize. At 0.01 depth, maximum soil temperature in the intercrop was lower by 1-2, 8-10 and 8-11 C in relation to monocultures of melon, yam and maize, respectively, depending on insolation load and soil moisture content. At 0.20 m depth, however, temperature differences between intercrop and monocrops were much smaller due to soil's damping effect. Intercropping decreased plant height and leaf area index of maize as compared to monocropping. Maize root length density in the 0-5 cm layer under the row was lower in the intercrop than sole crop, but in the 10-20 cm layer this was reversed.

The intercrop of maize, melon and yam produced 61 and 98% more food than monocrops in 1987 and 1988, respectively, as assessed by area x time equivalent ratio.

The intercrop was more productive in terms of food production per unit area than the monocultures as indicated by the values of LER. For example, intercropping produced 130 and 167% more food per unit land area than component monocultures in 1987 and 1988, respectively. LER does not take into account the growth periods of crops and is considered an inappropriate index for evaluating the potential productivity of a mixture consisting of crops of widely different maturity periods. The point is that if long duration crops (yams in the present study) had not been grown, two crops of shorter duration, e.g., maize or melon, could have been taken in a year. The ATER was 1.61 and 1.98 in 1987 and 1988, respectively. This index confirms the earlier conclusion drawn by LER that productivity of the intercrop was higher than monocultures per unit area but not as high as is indicated by LER.

1092 92 - 4/135

Cropping systems

Latin America, Colombia, study, intercropping, land-use efficiency, cassava, maize, yam, yield performance


to previous section to next section

[Ukrainian]  [English]  [Russian]