Change to Ukrainian interface versionChange to English interface versionChange to Russian interface versionHome pageClear last query resultsHelp page
Search for specific termsBrowse by subject categoryBrowse alphabetical list of titlesBrowse by organizationBrowse special topic issues

close this bookElectrical Machines - Basic Vocational Knowledge (IBE - Deutschland; 144 pages)
View the documentIntroduction
Open this folder and view contents1. General information about electrical machines
Open this folder and view contents2. Basic principles
Open this folder and view contents3. Execution of rotating electrical machines
Open this folder and view contents4. Synchronous machines
Open this folder and view contents5. Asynchronous motors
Open this folder and view contents6. Direct current machines
Open this folder and view contents7. Single-phase alternating current motors
close this folder8. Transformer
close this folder8.1. Transformer principle
View the document8.1.1. Operating principle of a transformer
View the document8.1.2. Voltage transformation
View the document8.1.3. Current transformation
Open this folder and view contents8.2. Operational behaviour of a transformer
Open this folder and view contents8.3. Three-phase transformer
 

8.1.1. Operating principle of a transformer

Transformers are stationary electrical machines which transmit energy from systems with certain current and voltage values into systems with generally different current and voltage values but with identical frequency.

Two separate windings are on the same iron core.

Following connection to alternating voltage U1 there is a standstill current I0. The magnetomotive force Θ = I0• N1 generates a magnetic alternating flow (Φ1) in the iron core.

The input and output winding of an alternating voltage are induced in accordance with the induction law. A self-induction voltage U10 arises in the input winding. It is counter-positioned in accordance with Lenz’s law on applied voltage. During idling operation - because of mutual induction - there arises the output voltage U20 which is simultaneously the terminal voltage U2.

U1~→ I0~→ Θ0~→ Φ1~→ U20~

The value of the induced voltage is derived from the following equation:

max. flow density

AFe

limb cross-section

U0

induction voltage

f

frequency

N

number of turns

The induction voltage increases along with the number of turns, the magnetic flow density in the iron core, the iron cross-section and the frequency.

Example:

Which maximum flow density occurs in an iron core of 16 cm2 cross-section when a voltage of 380 V (50 Hz) is applied to the primary coil with 980 turns?

Given: AFe = 16 cm2; N1 = 980; U1 = 380 V; f = 50 Hz

Sought:

Solution:





≈ 1.09 V • s • m-2
≈ 1.09 T

The iron core evidences a maximum flow density of 1.09 T.

to previous section to next section

[Ukrainian]  [English]  [Russian]