Change to Ukrainian interface versionChange to English interface versionChange to Russian interface versionHome pageClear last query resultsHelp page
Search for specific termsBrowse by subject categoryBrowse alphabetical list of titlesBrowse by organizationBrowse special topic issues

close this bookAmplifier Teaching Aid (GTZ, DED; 86 pages)
View the documentPreface
View the documentIntroduction
close this folderLesson 1 - Semiconductor Review
close this folderLesson Plan
View the documentIntroduction
View the documentDoping a semiconductor
View the documentDiode
View the documentWorksheet No. 1
View the documentExperiment No. 1
Open this folder and view contentsLesson 2 - Bipolar Transistor
Open this folder and view contentsBipolar Transistor II
View the documentFirst Evaluation
Open this folder and view contentsLesson 4 - Transistor Fundamentals
Open this folder and view contentsLesson 5 - Transistor Biasing
Open this folder and view contentsLesson 6 - Transistor Biasing II
View the documentSecond Evaluation
Open this folder and view contentsLesson 7 - Small Signal Amplifier
Open this folder and view contentsLesson 8 - Small Signal Amplifier II
Open this folder and view contentsLesson 9 - Small Signal Amplifier III
Open this folder and view contentsLesson 10 - Large Signal Amplifier
View the documentThird Evaluation
 

Doping a semiconductor

Doping increases the conductivity of a semiconductor. A doped semiconductor is called an extrinsic semiconductor. When an intrinsic semiconductor is doped with pentvalent (donor) atoms (i.e. Arsenic atoms donates one free electron to the crystal), it has more free electrons than holes.

---> N-type semiconductor

When an intrinsic semiconductor is doped with trivalent (acceptor) atoms (i.e. Baron atoms in the crystal will create a hole which is capable of accepting an electron), it has more holes than free electrons.

---> P-type semiconductor
to previous section to next section

[Ukrainian]  [English]  [Russian]